Learning Dynamic Bayesian Networks with the TOM4L Process
نویسندگان
چکیده
This paper addresses the problem of learning a Dynamic Bayesian Network from timed data without prior knowledge to the system. One of the main problems of learning a Dynamic Bayesian Network is building and orienting the edges of the network avoiding loops. The problem is more difficult when data are timed. This paper proposes a new algorithm to learn the structure of a Dynamic Bayesian Network and to orient the edges from the timed data contained in a given timed data base. This algorithm is based on an adequate representation of a set of sequences of timed data and uses an information based measure of the relations between two edges. This algorithm is a part of the Timed Observation Mining for Learning (TOM4L) process that is based on the Theory of the Timed Observations. The paper illustrates the algorithm with a theoretical example before presenting the results on an application on the Apache system of the ArcelorMittal Steel Group, a real world knowledge based system that diagnoses a galvanization bath.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کامل Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کامل